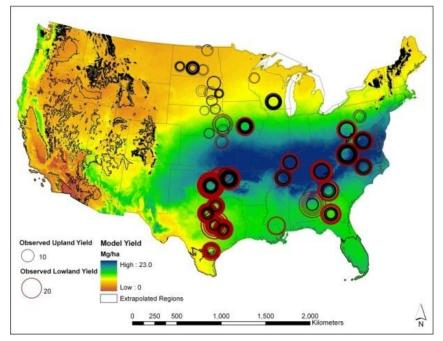
Gene Flow Matters in Switchgrass (Panicum virgatum), a potential widespread biofuel feedstock

Photo credit: D. Mann

ORNL CBES Forum, 17 May 2012

Charles Kwit

University of Tennessee, Department of Plant Sciences


- Who cares about switchgrass gene flow (and why)?
- What do we know about switchgrass gene flow?
- What steps are underway?

Agronomic switchgrass...

- Attractive native bioenergy feedstock (Schmer et al. 2008; Groom et al. 2008)
- Bioenergy interest dates to late 1970s (DOE)
- Extent of its potential also dictated by current energy-related Acts
- Breeding (conventional and molecular) and transgenic efforts for better switchgrass
 - e.g., Rapid growth in spring; high water-use efficiency; partitioning of nutrients to roots

Photo credit: J. Miles Cary

Wullschleger et al. 2010

Who cares about switchgrass gene flow?

- Conservation biologists
- Farmers
- Federal regulators

Photo credit: J. Miles Cary

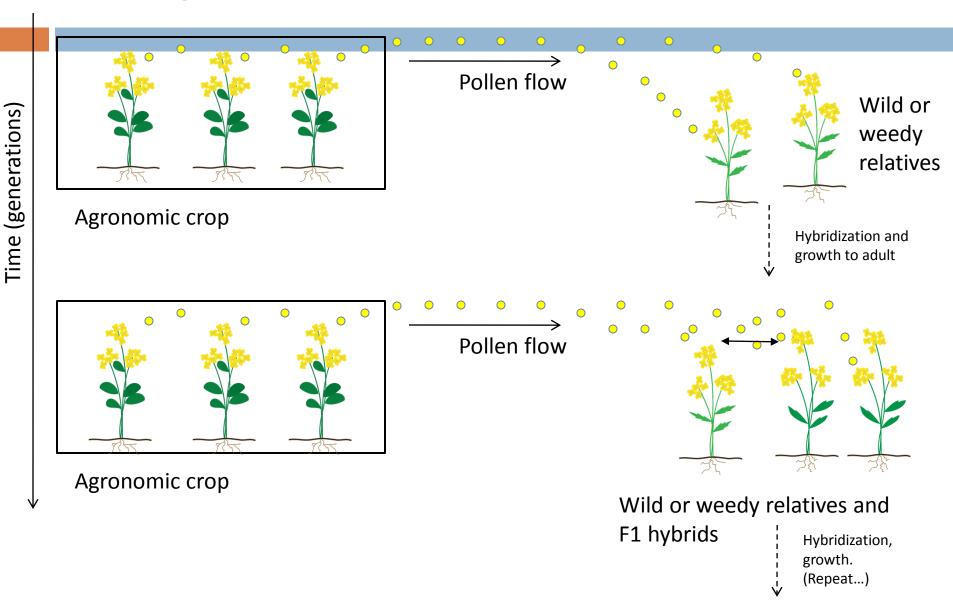
Who cares about switchgrass gene flow?

Conservation biologists

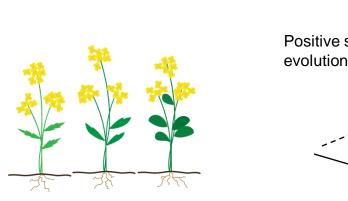
- Wild population "purity" concerns
- Invasibility concerns
 - Push for wide-scale planting of agronomic switchgrass as a biofuel feedstock + native switchgrass populations
- Population extinction concerns
 - Demographic swamping (esp. pollen) and "migrational meltdown"

Photo credit: J. Miles Cary

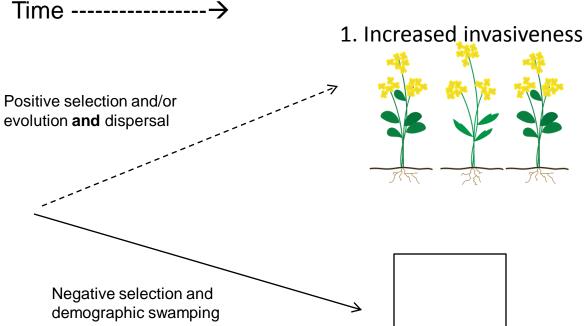
Invasibility (and extinction) concerns


- "Improvement" efforts could lead to switchgrass becoming an invasive species
 - Context: species that negatively affects ecosystem processes and functionality, and imparts economic losses
 - Mechanism: planting in novel environment and escape via seed (Raghu et al. 2006) or pollen-mediated introgression (Simberloff 2008)

- C₄ photosynthesis
 Long canopy duration
 Perennial
- → No known pests or diseases
- Rapid growth in spring (to outcompete weeds)
 Sterility
- Partitions nutrients to belowground components in the fall
- → High water-use efficiency


Ideal ecological traits of biomass energy crops (4). All traits shown other than perennial growth and sterile seeds are known to contribute to invasiveness. See (25).

Raghu et al. 2006


Introgression...

...leading to invasiveness or extinction

Introgressed wild relative*

2. Extinction of native population

Outline

Who cares about switchgrass gene flow (and why)? Conservation biologists

- Wide-scale planting of agronomic switchgrass may carry risk of invasiveness and extinction of wild relative populations
- From the literature: introgression of crop genomes into wild relatives has been documented; no documentation of invasiveness or extinction

Table 1. Recent (2005–2010) studies that provide molecular evidence of introgression from nontransgenic crops to their wild or weedy relatives

Сгор	Relative	Molecular marker	Refs.
Cichorium intybus	C. intybus	AFLP	[30]
Glycine max	Glycine soja	SSR	[32]
Helianthus annuus var. macrocarpus	Helianthus petiolaris	RAPD	[87]
Medicago sativa	M. sativa	AFLP, SSR	[88]
Oryza sativa	Oryza rufipogon	SSR	[89]
Pennisetum glaucum	P. glaucum	SSR	[90]
Phaseolus vulgaris	Ph. vulgaris	AFLP	[33]
Raphanus sativus	Raphanus raphanistrum	Allozyme	[25]
Sorghum bicolor	Sorghum halepense	RFLP	[91]
Triticum aestivum	Aegilops peregrine	Fragment of noncoding locus	[92]
Vigna unguiculata	V. unguiculata ssp. unguiculata var. spontanea	RFLP	[93]
Vitis vinifera	Vit. vinifera ssp. silvestris	SSR	[24]
Zea mays	Z. mays	SSR	[94]

Abbreviations: RAPD, randomly amplified polymorphism; RFLP, restriction fragment length polymorphism; SSR, simple sequence repeat.

Kwit et al. 2011

- What do we know about switchgrass gene flow?
- What steps are underway?

Who cares about switchgrass gene flow?

Farmers

- Seed purity
 - Cultivar purity from seed farms could be compromised by cultivar x cultivar or wild x cultivar cross-pollination
- Federal regulators
 - Containment of transgenes

Photo credit: J. Miles Cary

What do we know about switchgrass gene flow?

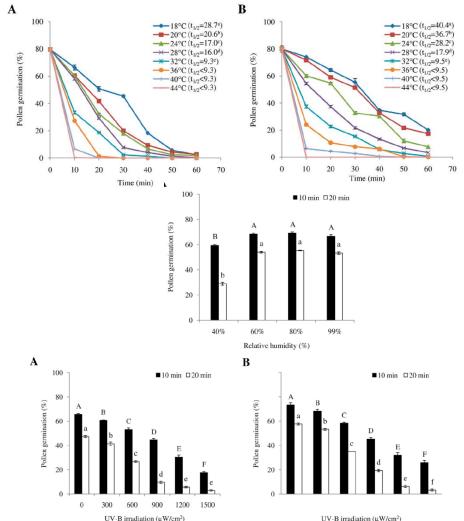
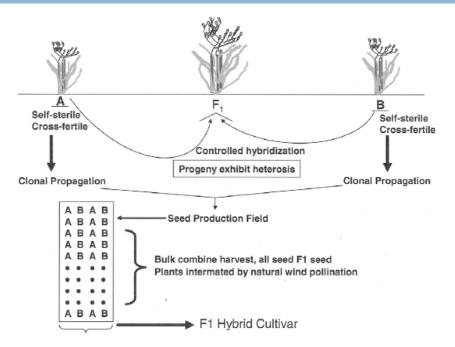

- Very little known, and much assumed
- Information on the following would be helpful:
 - Seed dispersal
 - Pollen dispersal distances and viability
 - Crossing and hybridization potential

Photo credit: W. Gretz


So little known (and so much assumed)... Pollen dispersal and viability

- Recent information on pollen viability (Ge et al. 2011)
 - Negative effects of increased temperature, decreasing relative humidity, and increased UV-B radiation on pollen germination
 - 150 min under ideal conditions to lose complete viability - similar to other grasses

So little known (and so much assumed)... Crossing and hybridization potential

- P. virgatum Cultivar x
 Cultivar crosses
 - requires same ploidy levels [e.g., Lowland tetraploid Kanlow x upland tetraploid Summer (Vogel and Mitchell 2008; Martinez Reyna and Vogel 2008)]
- No published accounts of 'agronomic x "wild" or interspecific hybridization
- Few examples of Panicum hybridization

Martinez Reyna and Vogel 2008

Outline

- Who cares about switchgrass gene flow (and why)?
- What do we know about switchgrass gene flow?
 - Remarkably little
 - Pollen viability similar to other grasses
 - Crossing and hybridization potential may be limited to intraspecific crosses involving similar ploidy levels
 - Still need information on pollen dispersal, seed dispersal, intra- and inter-specific crosses
- What steps are underway?

Steps underway

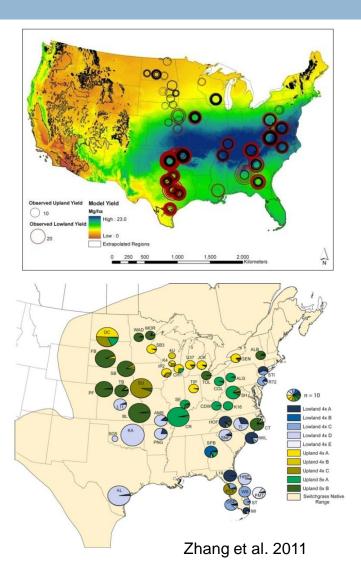
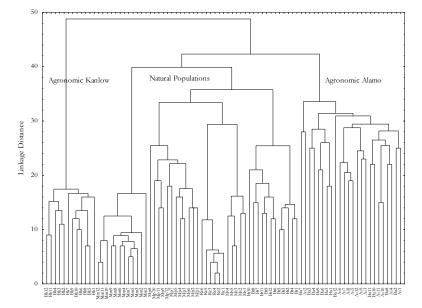

- Genetic diversity of native switchgrass in the Midsouth
- Current USDA BRAG project addressing:
 - Pollen dispersal distances (field-to-field and "general")
 - Intra- and interspecific hybridization

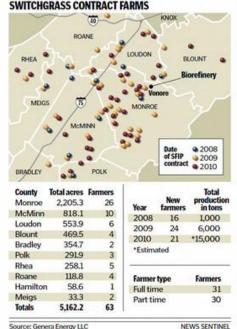
Photo credit: H.S. Moon

Genetic diversity of native switchgrass in the Midsouth


- Little is known about switchgrass population genetic structure where it has its highest potential yields
- Baseline data needed for future monitoring

Genetic diversity of native switchgrass in the Midsouth

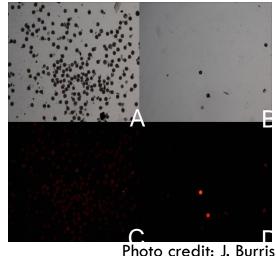
- 8 RAPD markers across 5 native TN populations and 3 agronomic "populations" in east TN
- Similar mean number of loci/primer (15.1) and diversity within and among populations as other RAPD studies
- Most diverse native population not as diverse as some agronomic "populations"
- NSF and NPCI proposals in review for expansion of this using SSR markers



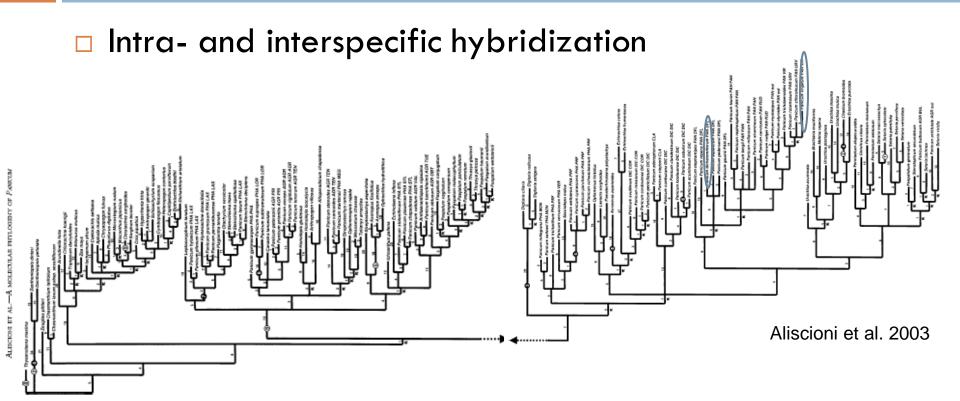
Nageswara Rao et al., in review

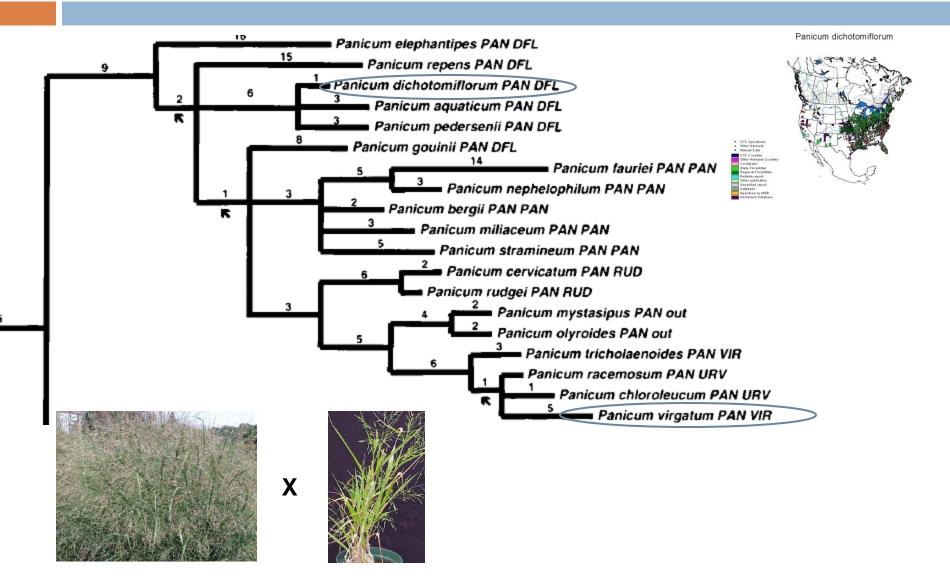
Field-to-field pollen dispersal distances

- Take advantage of new plantings of improved Kanlow (EG1102) in east TN
- Assignment analysis (via diagnostic SNPs) of offspring from maternal Alamo plants at numerous distances from the Kanlow source: realized probability of outcrossing
- Relevant to seed purity



Source: Genera Energy LLC


- Pollen dispersal distances in switchgrass
 - □ Nelder wheel design
 - Source clones of RFP Alamo ST1
 - Receptor clones of Alamo 2 along rays
 - Pollen traps to measure RFP pollen grains as a function of distance
 - Seeds (verified by RFP seedlings) as a function of distance



- Intra- and interspecific crosses involving P.
 virgatum
 - cv. Alamo x wild
 - Compared to offspring of cv. Alamo x cv. Alamo and wild x wild
 - Interspecific crosses...

Plans to cross switchgrass with its closest existing congener in TN

Outline

- Why should anyone care about gene flow and hybridization in switchgrass?
- □ So little known (and so much assumed)...
- Steps underway
 - Genetic diversity and structure of local Midsouthern populations
 - Pollen dispersal distances & field-to-field 'realized' pollen dispersal success
 - Intra- and inter-specific hybridization

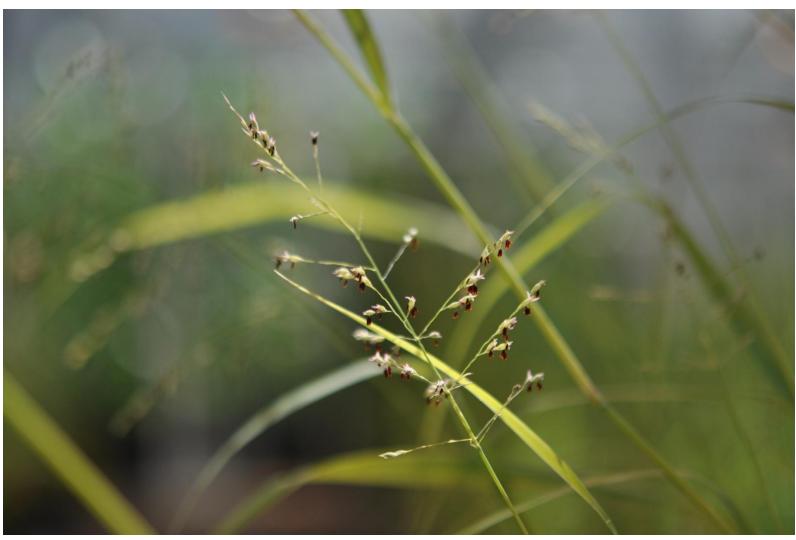
Pressing questions for the CBES Forum

- How should elements of gene flow be incorporated into sustainability indicators for bioenergy systems?
- Should crop genes be contained? If so, where, when, and how?
- Can the risk associated with invasiveness (genes and/or organisms) be minimized? If so, how?

Acknowledgements

- N. Stewart, H. Moon, D.
 Mann, J. Burris, R. Millwood,
 S. Agarwal, M. Nageswara
 Rao, M. Hanson, and many
 others in the Stewart lab and
 Plant Sciences, UTIA
- S. Jackson, S. Bobzin, B.
 Black, and other cooperators
- USDA NIFA BRAG
 (Biotechnology Risk
 Assessment Grants)
- All references available upon request

The National Institute of Food and Agriculture

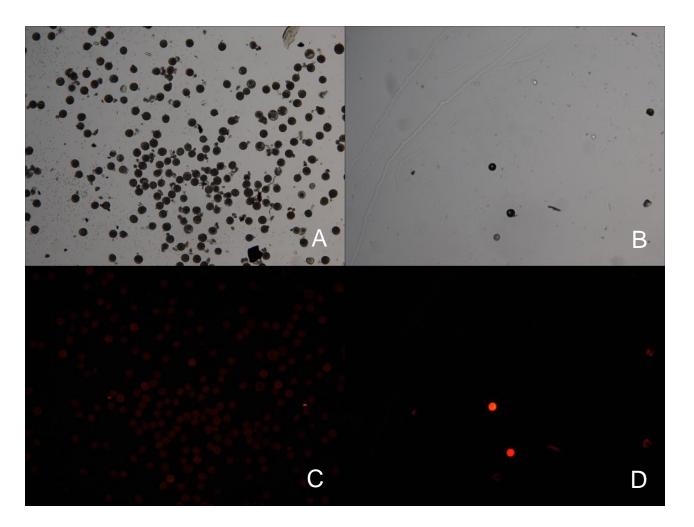

Photo credit: J. Miles Cary

THEUNIVERSITY

INSTITUTE of

AGRICULTURE

Questions?



Groom et al. (2008)

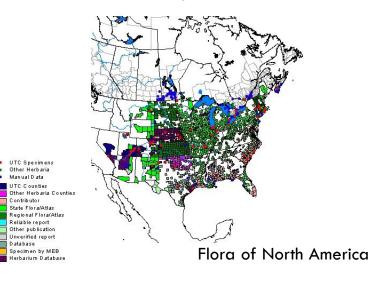
Table 1. Comparison of estimated feedstock efficiencies, environmental impacts, and land-use requirements to produce 50% of U.S. demand for transportation fuels from various biofuel crops.

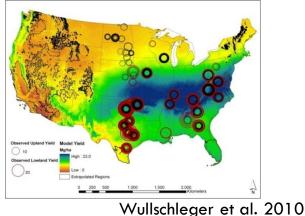
Biofuel crop	Energy conversion efficiency ^a		Water) use ^c	Fertilizer use ^d	Pesticide use ^e	Energy inputs ^f	Fuel yield ^g (l/ba)	Land area needed to meet 50% of U.S. transportation fuel demands ^b			
								(million ba)	(% U.S. cropland)	Additional considerations [†]	Sources ^j
Grasses \rightarrow ethanol											
Corn	1.1-1.25	81-85	high	high	high	high	1135-1900	290-485	157-262	A, F	3, 5
Sugar cane	8-10.2	4-12	high	high	med	med	5300-6500	85-105	46-57	Α	4,7,12
Switch grass	1.8 - 4.4	-24	med-low	low	low	low	2750-5000	110-200	60 - 108	P, N, R	1,5
Native prairie grasses	est. 5.44	-88	low	low	low	low	est. 940	585	316	P, N, W, Expt	5,11
Woody biomass → ethanol/synfuel											
Poplar & willow spp.	10	-24 to 11	low-med	low-med	low	low	5500-9000	60-100	32-54	P , W	1,10
Fischer-Tropsch (2nd generation fuel)	18-64	−24́ to 11	low-med	low-med	low	low	30,000-50,000	11-18	6-10	Ρ, W	1
Residues → biodiese ethanol	1/										
Wood residues	20-40	_	med	low	low	low	1150-2000	275-475	150-250	P, W	8, 10
Corn stover	5-11	81	med	high	high	low	0.25-0.3 l/kg	_	_	S	1, 8
Wheat straw	2-5	—	low	med	med	low	0.3-0.5 l/kg	—	_	S	8, 10
Oil crops \rightarrow biodiese	:1										
Soybeans	1.9-6	49	high	low-med	med	med-low	225-350	330-450	180-240	A, D, F	2,5
Rapeseed or canola	1.8 - 4.4	37	high	med	med	med-low	2700	55	30	Α	2,6
Oil palm	9	51	high	med	low	low	4760	34	18	P, D	2
Microalgae → biodiesel	_	-183	med	low	low	high	49,700-108,800	1.5-3.2	1.1-1.7	Expt	2,9

Transgenic Pollen vs. Non transgenic pollen

Photos A and B (Non-transgenic vs. Transgenic ST1) were taken under white light with 10 ms exposure. Photos C and D were excited with 535/30 nm light and emissions filter 600/50 nm for 2 s.

Switchgrass


Name	Ecotype	Range	Target Uses	Comments
EG 1 10 1	Lowland	Southern Range and lower limits of Midrange; about 20-25' min. rainfall during the growing season, or irrigation.	Biochemical Thermochemical Cofiring/ Cogeneration Digestion	Improved Alamo type; bred for greater biomass yields and better vigor/establishment. High biofuel conversion potential has shown superior conversion characteristics for biochemical and thermochemical processes. Moderate resistance to rust (Fuccinia spp.) observed. May work well in a 2-cut system in high rainfall areas.
EG 1 102	Lowland	Southern to Midrange; does well in northern limits of Southern Range; about 20-25' min. rainfall during the growing season, or irrigation.	Biochemical Thermochemical Cofiring/ Cogeneration Digestion	Improved Kanlow type; adapted farther north than BG 1101. Bred for high-biomass yields and better vigor/establishment; high biofuel conversion potential; has shown superior conversion characteristics for biochemical and thermochemical processes. Moderate resistance to rust (<i>Puccinia spp.</i>) observed.
Blackwell	Upland	Midrange; about 20-25° min. rainfall during the growing season, or irrigation.	Biochemical Thermochemical Cofiring/ Cogeneration Digestion	Late-maturing and productive; rust resistance observed; suited to drier areas.
Trailblazer	Upland	Midrange and lower limits of Northern Range; about 20-25° min. rainfall during the growing season, or irrigation.	Biochemical Thermochemical Cofiring/ Cogeneration Digestion	Pathfinder type with improved digestibility; late-maturing, vigorous and winter hardy.
Sunburst	Upland	Northern Range; about 20-25° min. rainfall during the growing season, or irrigation.	Biochemical Thermochemical Cofiring/ Cogeneration Digestion	Selected for good seed ling vigor; medium-to-high yield potential and winter hardy.


http://newenergyandfuel.com/wp-content/uploads/2009/05/ceres-switchgrass-seed-chart.jpg

Native switchgrass

- Native in numerous habitats, mainly eastern U.S.
- History of use: ornamental, erosion control, forage, wildlife habitat
- As a Panicum, it has a history of hybridization and introgression (Flora of North America)
- Overlap of populations with target areas for agronomic potential

Panicum virgatum

